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LATTICE

∆X  = {(x, x )|x ∈ X }
Definition 1
On a set X, ≤ ⊆ X × X is a partial order if
E  reflexive: ∆X  ⊆ ≤
E  anti-symmetric:  ≤ ∩  ≤−1⊆ ∆X
E  transitive: ≤ ◦ ≤ ⊆ ≤
We will use x ≤ y to denote (x, y ) ∈ ≤. Let x < y ¾(x ≤ y ∧ x ƒ= y ).
Example 1
Is the following a partial order on {a, b, c}?
E  ≤= {(a, a), (b, b), (c, c)}
E  ≤= ∅
E  ≤= {(a, a), (b, b), (c, c), (a, b)}
E  ≤= {(a, a), (b, b), (c, c), (a, b), (b, a)}
 	E  ≤= {(a, a), (b, b), (c, c), (a, b), (b, c)}	
 (
Partial
 
order
 
and
 
poset
)




Definition 2
A poset (X, ≤) is a set equipped with partial order ≤ on X

Example 2
Is the following a partial order?
E  (N, ≤)
E  (N × N, {( (a, b), (c, d ) )|a ≤ c})
E  (N × N, {( (a, b), (c, d ) )|a ≤ c ∧ b ≤ d })
E  ({a, b, c}, {(a, a), (b, b), (c, c), (a, b), (a, c)})
 (
Poset
)


Definition 3
The covering relation « for poset (X, ≤) is
x « y ¾ (x < y ) ∧ ¬(∃z.x < z ∧ z < y )
In other words, « contains only immediate parents and has no self-edges.

Example 3
Consider poset ({a, b, c, d, e}, ≤), where
≤ = {(a, a), (b, b), (c, c), (d, d ), (e, e), (a, b), (a, c), (a, d ), (b, e), (c, e), (d, e), (a, e)}
Therefore,

«  = {(a, b), (a, c), (a, d ), (b, e), (c, e), (d, e)}
 (
Covering relation
)

We draw posets (X, ≤) as DAG. Nodes are from X and edges are from «.
DAG will be vertically aligned, i.e., if there is an edge between x and y , and
x is located below y then x « y .

Example 4
Let us consider again our previous poset ({a, b, c, d, e}, ≤), where
«  = {(a, b), (a, c), (a, d ), (b, e), (c, e), (d, e)}


Nodes at same level are incomparable.
 (
Hasse
 
diagrams
)


Definition 4
For a poset (X, ≤), C ⊆ X is chain if ∀x, y ∈ C. x ≤ y ∨ y ≤ x
Definition 5
For a poset (X, ≤), C ⊆ X is antichain if ∀x, y ∈ C. x ≤ y ⇒ y = x

Example 5



 (
chain
)antichain
 (
Chain
 
and
 
antichain
)


Definition 6
A poset (X, ≤) satisfies ascending chain condition if for any sequence x0 ≤ x1 ≤ x2 ≤ . . . , ∃k.∀n > k xk = xn
Symmetrically, we define descending chain condition

Definition 7
A poset (X, ≤) is called well ordered if it satisfies descending chain condition

Example 6
(N, ≤) satisfies descending chain condition but not ascending chain condition.
 (
Ascending/descending chain condition
)


Definition 8
For poset (X, ≤) and S ⊆ X, minimal (S) ¾{x ∈ S|¬∃y ∈ S. y < x }
maximal (S) ¾{x ∈ S|¬∃y ∈ S. y > x }


Definition 9
For poset (X, ≤) and S ⊆ X,
min(S) ¾ x if {x } = minimal (S) //min(S) may not exist
max (S) ¾ x if {x } = maximal (S)
 (
Minimum
 
and
 
maximum
)




Consider poset (X, ≤)
If min(X ) exists, we denote min(X ) by ⊥
If max (X ) exists, we denote max (X ) by T

 (
Top 
and
 
bottom
)



Definition 10
For poset (X, ≤) and S ⊆ X,
E  x ∈ X  is upper bound of S if ∀y ∈ S. y ≤ x
E  x ∈ X  is lower bound of S if ∀y ∈ S. x ≤ y

 (
Upper
 
bound
 
and
 
lower
 
bound
)



Definition 11
x ∈ X is least upper bound(lub) of S if x is upper bound of S and
∀u. (∀y ∈ S. y ≤ u) ⇒ x ≤ u lub is usually denoted by ∨, H (called join).
Definition 12
x ∈ X is greatest lower bound(glb) of S if x is lower bound of S and
∀u. (∀y ∈ S. u ≤ y ) ⇒ u ≤ x lub is usually denoted by ∧, H (called meet).
Note: lub and glb may not exist.
 (
Least
 
upper
 
bound
 
and
 
greatest
 
upper
 
bound
)


 (
Note
 
that
 
the
 
uniqueness
 
is
 
not 
obvious
 
by
 
the
 
definition
 
of
 
H
)Theorem 1
For poset (X, ≤) and S ⊆ X, if HS exists then it is unique.
Proof.
E  Suppose x and y are HS.
E  By definition of H, x and y both are upper bounds of S.
E  Since x is upper bound and y is HS, therefore y ≤ x .
E  Symmetrically, x ≤ y .
E  Due to anti-symmetry, x = y .

Therefore, H and H are partial functions : 2X ‹→ X
E  If S = {x, y }, we will write x H y
E  The infix usage usually means, lub of finite elements
 (
Uniqueness
 
of
 
lub
 
an
 
glb
)


Definition 13
A join semi-lattice (X, ±, H) is a poset (X, ±) such that
∀x, y ∈ X. x H y exists.

Definition 14
A meet semi-lattice (X, ±, H) is a poset (X, ±) such that
∀x, y ∈ X. x H y exists.
Example 8
N2 is a meet semi-lattice.
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A join semi-lattice (X, ±, H) satisfies
E  (a H b) H c = a H (b H c)	(associativity)
E  (a H b) = (b H a)	(commutativity)
E  a = (a H a)	(idempotence)
 (
Properties of semi-lattice
)

 (
Commentary:
 
Please
 
read
 
the
 
theorem
 
carefully.
 
It
 
says
 
that
 
the
 
three
 
conditions
 
characterizes
 
semi-lattices.
We
 
also
 
need
 
to
 
show
 
H
 
is
 
lub
 
with
 
respect
 
to
 
±
.
)
Theorem 3
Let X be a set with function H : X × X → X satisfying
(a H b) H c = a H (b H c),	(a H b) = (b H a),	and	(a H a) = a.
Let a ± b ¾ (a H b) = b.
Then, (X, ±, H) is a join semi-lattice.
Proof.
We need to show that ± is a partial order, i.e.,
E  ± is reflexive,
E  ± is transitive, and
E  ± is anti-symmetric.
 (
Equivalent definition of semi-lattice
)



Proof(contd.)
claim: ± is reflexive
E  a ± a holds because (a H a) = a.
claim: ± is transitive
1. Assume a ± b and b ± c
2. def of ±,
(a H b) = b and (b H c) = c.
3. By substitution, ((a H b) H c) = c.
4. Due to associativity, a H (b H c) = c.
5. Due to 4, a H c = c.(why?)
6. Therefore a ± c.	...
 (
Equivalent definition of semi-lattice II
)


Proof(contd.)
claim: ± is anti-symmetric
1. Assume a ± b and b ± a
2. By def of ±, (a H b) = b and (b H a) = a
3. By commutativity, a = b

claim: H is lub
1. b ± a H b, because a H (a H b) = (a H a) H b = a H b.
2. Similarly, a ± a H b.
3. Let x be such that a ± x and b ± x .
4. Therefore, (a H x ) = x = (b H x )
5. After substitution, (a H (b H x )) = x
6. Apply associativity, ((a H b) H x ) = x , which is (a H b) ± x
 	7.  Therefore, a H b = lub({a, b})	
 (
Equivalent definition of semi-lattice III
)






We write (X, ±, H) to describe a semi-lattice.
Due to the previous theorem, if we know something is a semi-lattice, we need not write both the second and third component.

One defines the other.

We may only write (X, H).
 (
Notational redundancy in semi-lattice
)






 (
exist
 
for
 
finite
 
sets
H
 
and
 
H
 
are
 
forced
 
to
)Definition 15
A lattice (X, ±, H, H) is a poset (X, ±) such that
∀x, y ∈ X both x H y and x H y exist.

 (
Lattice
)

Properties of lattice
1. (a H b) H c = a H (b H c)	(associativity)
2. (a H b) H c = a H (b H c)
3. (a H b) = (b H a)	(commutativity)
4. (a H b) = (b H a)
5. (a H a) = a	(idempotence)
6. (a H a) = a)
7. a H (a H b) = a	(absorption)
8. b H (a H b) = b
Properties 1-6 were already present in semi-lattices. The above properties are axiomatization of lattice Observe that distributivity is missing!!!
 (
Properties of
 
lattice
)




Definition 16
A complete partial order(cpo) is a poset (X, ±) such that every increasing chain in X has a lub in X

Definition 17
A complete lattice is a poset (X, ±) such that for all S ⊆ X has HS in X.

Example 9
N2 is not a complete lattice.
 (
Complete partial order/lattice
)






[bookmark: _bookmark2]Theorem 4
Let (X, ±) be a complete lattice.
a. complete lattice has ⊥
b. complete lattice has T
Proof.
a. ⊥ = H∅(why?)
b. ⊥ = HX (why?)
 (
Complete lattice properties
)



Theorem 5
Let (X, ±) be a complete lattice. For all S ⊆ X, HS exists.
Proof.
claim: HS = H{y |∀x ∈ S. y ± x }
 (
S
∈ 
ub
(
Y
 
)
lb
(
S
) 
s
H
Y
Y
 
=
 
{
y
 
|∀
x
 
∈
 
S
.
 
y
 
±
 
x
 
}
∈
 
lb
(
S
)
)





Definition 18
For a poset (X, ±) with T element, a moore family M ⊆ X is such that
E  T ∈ M
E  ∀S ⊆ M. H S exists and HS ∈ M
Theorem 6
Let (X, ≤) be a poset with T element. If M ⊆ X is a moore family then
(M, ±, T, HM) is a complete lattice.
Proof.
1. (X, ≤) is poset then (M, ≤) is a poset
2. Since ∀S ⊆ M. H S exists, M is a complete lattice due to Theorem 4.

 (
Moore
 
family
)




We have seen the following objects

 (
Hierarchy of objects
)






cpo



Moore family

Set X

Poset (X, ±)


Semi-lattice (X, ±, H) and (X, ±, H) Lattice (X, ±, H, H)
Complete lattice (X, ±, T, ⊥, H, H)




[bookmark: Exercises][bookmark: _bookmark3]




End of Lecture 
