Series

Series : Let (an) be a sequence of real numbers. Then an expression of the form a1+a2+a3+::::::denoted by ; is called a series.

Examples : 1.      1/ 1 + 1/2 + 1/3 + .... or
 2. 1 + 1/4 + 1/9 + .... or 

Partial sums : Sn = a1 + a2 + a3 + :::::: + an is called the nth partial sum of the series
.

Convergence or Divergence of an: If Sn ! S for some S then we say that the seriesan converges to S.
If (Sn) does not converge then we say that the series an diverges.
Examples :
1.
 diverges because Sn = log(n + 1).
2.
 converges because Sn = 1- 1/n+1  1.
3. If 0 < x < 1; then the geometric series converges to 1/(1-x) because       
Sn = (1-xn+1)/(1-x).

Necessary condition for convergence

Theorem 1 : If  converges then an 0.
Proof : Sn+1- Sn = an+1 S - S = 0.
The condition given in the above result is necessary but not sufficient i.e., it is possible that an 0 an  diverges.
Examples :
1. If  1, then  diverges because an 
2.
 diverges because an0
3.
 diverges, however, log((n+1)/n ) → 0.

Necessary and sufficient condition for convergence

Theorem 2: Suppose an 0; n .Then an converges if and only if (Sn) is bounded above.
Proof : Note that under the hypothesis, (Sn) is an increasing sequence. 

Example : The Harmonic series  diverges because
  = 1 + ½ + 2.(1/4) + 4 (1/for all) + ::: + (1/) = 1 + ( k / 2) for all k.
Theorem 3: If  converges then  converges.

Proof : Since  converges the sequence of partial sums of
 satisfies the Cauchy criterion. Therefore, the sequence of partial sums of
 satisfies the Cauchy criterion. 

Remark : Note that  converges if and only if
 converges for any p 1.

Tests for Convergence
Let us determine the convergence or the divergence of a series by comparing it to one whose behavior is already known.

Theorem 4 : (Comparison test ) Suppose 0 an bn for n ¸ k for some k: Then
(1) The convergence of  implies the convergence of 
(2) The divergence of  implies the divergence of .

Proof : (1) Note that the sequence of partial sums of
is bounded. Apply Theorem 2.
(2) This statement is the contrapositive of (1). 

Examples:
1. converges because 1/(n+1)(n+1)  1/n(n+1) : This implies that  converges.
2.   diverges because 1/n 
3.  converges because n2 < n! for n > 4.

Problem 1 : Let an 0: Then show that both the series
and   converge or diverge together.
Solution : Suppose
 converges. Since 0  by comparison test converges.
Suppose  converges. By the Theorem 1, (an/1+an)0. Hence an 0 and therefore
1  1 + an < 2 eventually.
Hence 0  an 1+an. Apply the comparison test.

Theorem 5 : (Limit Comparison Test) Suppose an; bn 0 eventually. Suppose L.
1. If L  R;L > 0, then both and  converge or diverge together.
2. If L  R;L = 0, and converges then converges.
3. If L = 1 and diverges then  diverges.

Proof: 1. Since L > 0, choose  > 0, such that L - > 0. There exists such that
 0  L< L+Use the comparison test.
2. For each  > 0, there exists such that 0 < an/bn
<  ; n > n0. Use the comparison test.
3. Given α> 0, there exists n0 such that an/bn > α n > n0. Use the comparison test. 

Examples :
1.  (1 – n.sin (1/n) converges. Take bn = 1/n2 in the previous result.
2.
log(1 + 1/n) converges. Take bn = 1/n2 in the previous result.

Theorem 6 (Cauchy Test or Cauchy condensation test) If an  0 and an+1  an  n, then  converges if and only if  converges.
Proof : Let Sn = a1 + a2 + :::: + an and Tk = a1 + 2a2 + :::: +:
Suppose (Tk) converges. For a fixed n; choose k such that 2k n. Then
Sn = a1 + a2 + :::: + an
· a1 + (a2 + a3) + ::::: + (a2k + :::: + a2k+1¡1)
· a1 + 2a2 + :::: + 2ka2k
= Tk:
This shows that (Sn) is bounded above; hence (Sn) converges.
Suppose (Sn) converges. For a fixed k; choose n such that n 2k: Then
Sn = a1 + a2 + :::: + an
¸ a1 + a2 + (a3 + a4)::::: + (a2k¡1+1 + :::: + a2k )
¸ 1
2a1 + a2 + 2a4 + :::: + 2k¡1a2k
= 1
2Tk:
This shows that (Tk) is bounded above; hence (Tk) converges. ¤
Examples:
1. 1/n p converges if p > 1 and diverges if p 1:
2.
1/n(logn)p converges if p > 1 and diverges if p  1:
Problem 2 : Let an  0; an+1  an for all n and suppose  converges. Show that nan 0 as
n  .
Solution : By Cauchy condensation test
  converges. Therefore 2ka2k 0 and hence 2k+1a2k ! 0 as k ! 1.
 Let 2k  n  2k+1. Then nan  na2k 2k+1a2k  0. This implies that
nan  0 as n 

Theorem 7 (Ratio test)  Consider the series ; an not equal to 0 for all n:
1. If  q eventually for some 0 < q < 1; then converges.
2. If 1 ;eventually then  diverges.
Proof: 1. Note that for some N; j an+1 j · q j an j for all n ¸ N: Therefore, j aN+p j · qp j aN j
for all p > 0: Apply the comparison test.
2. In this case j an j 9 0.
Corollary 1: Suppose an not equal to 0 for all n; and j an+1
an
j ! L for some L:
1. If L < 1 then
j an j converges.
2. If L > 1 then
an diverges.
3. If L = 1 we cannot make any conclusion.
Proof :
1. Note that j an+1
an
j < L + (1¡L)
2 eventually. Apply the previous theorem.
4
2. Note that j an+1
an
j > L ¡ (L¡1)
2 eventually. Apply the previous theorem.

Examples :
1. 1/n! converges because an+1 / an 0.
2. nn / n! diverges because an+1 / an = (1 + 1/n)n e > 1.
3. 1/n diverges and 1/n2 converges, however, in both these cases 
an+1/an  1.

Theorem for all : (Root Test ) If 0  an  xn or 0 an1/n  x eventually 
for some 0 < x < 1 then  converges.
Proof : Immediate from the comparison test. 

Corollary 2: Suppose j an j1=n ! L for some L: Then
1. If L < 1 then
j an j converges.
2. If L > 1 then
an diverges.
3. If L = 1 we cannot make any conclusion.

Examples :
1.  converges because a1/n = 1/
logn 0:
2.  n2 converges because an1/n= 1
(1+ 1/n )n 1/e < 1:
3.  diverges and  converges, however, in both these cases a1/n 1.

Theorem 9 : (Leibniz test ) If (an) is decreasing and an 0, then
  converges.

Proof : Note that (S2n) is increasing and bounded above by S1. Similarly, (S2n+1) is decreasing
and bounded below by S2. Therefore both converge. Since S2n+1 ¡S2n = a2n+1 ! 0; both (S2n+1)
and (S2n) converge to the same limit and therefore (Sn) converges. 

Examples :
 ;
  and
 converge.

Problem 3: Let fang be a decreasing sequence, an ¸ 0 and lim
n!1
an = 0: For each n 2 N; let
bn = a1+a2+:::+an
n : Show that
 (¡1)nbn converges.
Solution : Note that bn+1 ¡ bn = 1
n+1(a1 + a2 + ::: + an+1) ¡ 1
n(a1 + ::: + an) = an+1
n+1 ¡ (a1+:::+an)
n(n+1) .
Since (an) is decreasing, a1 + ::: + an ¸ nan. Therefore, bn+1 ¡ bn · an+1¡an
n+1 · 0. Hence (bn) is
decreasing.
We now need to show that bn ! 0. For a given ² > 0, since an ! 0, there exists n0 such that
an < ²
2 for all n ¸ n0.
Therefore, j a1+¢¢¢+an
n j = j a1+¢¢¢+an0
n + an0+1+¢¢¢+an
n j ·j a1+¢¢¢+an0
n j +n¡n0
n
²
2 . Choose N ¸ n0 large
enough so that a1+¢¢¢+an0
N < ²
2 . Then, for all n ¸ N, a1+¢¢¢+an
n < ². Hence, bn ! 0. Use the Leibniz
test for convergence.
