SIMPLEX METHOD


4.1 Introduction

The two variable problem of the LPP can be solved by the graphical method, but it is very complicated to solve the three or more variable problem by using the graphical method. In such cases, a simplex and most widely used simplex method is adopted, which was developed by G. B, Dantzig in 1947. The simplex method provides an algorithm which is based on the fundamental theorem of linear programming. See the ﬁgure below;
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Figure 4.1: Structure of an algorithms


4.2 Standard Form of an LPP

We have to convert the LPP into the standard form of LPP before the use of simplex method. The standard form of the LPP should have the following char- acteristics;


i) All the constraints should be expressed as equations by adding slack or sur- plus and / or artiﬁcial variables.
ii) The right hand side of each constraints should be made non negative if it is not, this should be done by multiplying both sides of the resulting constraints by -1.
iii) The objective function should be of the maximization type


The general standard form of the LPP is expressed as follows;

Optimize Z = c1x1 + c2x2 + ... + cnxn + 0S1 + 0S2 + ... + 0Sm subjected to the constraints
a11x1	+a12x2  +...  +a1jxj	+ ... a1nxn + S1(≤=≥)b1 a21x1	+a22x2  +...  +a2jxj	+ ... a2nxn + S2(≤=≥)b2
..	..	..	..	..
ai1x1	+ai2x2  +...	+aijxj	+ ... ainxn + Sn(≤=≥)bi
..	..	..	..	..
am1x1 +am2x2 +... +amixj + ... amnxn + Sm(≤=≥)bn
and non negativity constraints
x1, x2,..., xn, S1, S2,..., Sm ≥ 0


Note:


i) A slack variable represents unused resource, either in the form of time on a machine, labour hours, money, warehouse space or any number of such resources in various business problems. Since these variables yield no proﬁt, therefore such variables are added to the original objective function with zero coeﬃcients. Slack variables are also deﬁned as the non-negative variables


which are added in the LHS of the constraints to convert the inequality J ≤J
into an equation.
ii) A surplus variable represents amount by which solution values exceed a re- source. These variables are also called negative slack variables. Surplus variables, like slack variable carry a zero coeﬃcient in the objective func- tion. Surplus variables which are removed from the LHS of the constraints to convert the inequality J ≥J into an equation.
iii) Artiﬁcial variables are also deﬁned as the non-negative variables which are added in the LHS of the constraints to convert equality into the standard form of simplex.


4.3 The Simplex Method

4.3.1 Maximization Case

The steps of the simplex algorithm to obtain an optimal solution(if it exists) to the LPP are as follows. But before you start step 1, ﬁrst formulate the mathematical model of the given LPP.

Step 1: Express the Problem in Standard Form
· Check whether the objective function of the formulated LPP is of max- imization or minimization. If it is of minimization, then convert it into one of maximization by using the following relationship.

Minimize  Z = −Maximize  Z∗	∗where Z = −Z


· Check whether all the bi(i = 1, 2,..., m) values are positive. If any one of them is negative, then multiply the corresponding constraint by -1 in order to make bi ≥ 0. In doing so, remember to change a ≤ type constraint to a ≥ type constraint, and vice-versa.
· Replace each unrestricted variable with the diﬀerence of two non-negative variables; replace each non-positive variable with a new non-negative variable whose value is the negative of the original variable.
· After that express the problem in standard form by introducing slack, surplus and/or artiﬁcial variables, to convert the inequalities into equa- tions.


Step 2:Find the Initial Basic Solution
· In the simplex method, a start is made with a basic feasible solution, which we shall get by assuming that the objective function value Z=0. This will be so when decision variables x1, x2,..., xn each equal to zero. These variables are called non-basic variables.
· Substituting x1 = x2 =  ... =  xn  =  0 in constraint equations we  get S1 = b1, S2 = b2 ... Sm = bm which is called initial basic feasible solution. Not that Z = 0 for this solution.
· Variables S1, S2,..., Sm are called basic variable (BV).
· The problem in the standard form and the solution obtained above are now expressed in the form of table, called simplex tableau.Cj −→
C1
C2
... 
Cn
0
. . . 0
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... 
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0
0
... 
0
0
...0 

... 
... 
Cj −Zj
C1 − Z1
C2 − Z2
... 
Cn − Zn
0
. . . 0
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Where;
· Cj: Objective row (Coeﬃcient of variable in objective function) it remain unchanged during succeeding table.
· CBm: Objective column (Coeﬃcient of current basic variable in objective function)
· Sm: Basic variable in basic. Initially basic variables are slack variables.
· xBm: Values of basic variables column when x1 = x2 = ... = xn = 0.
· Body Matrix: Coeﬃcient of decision (non-basic) variables in constraints set (aij).
· Identity Matrix: Coeﬃcient of slack variables in the table.


· Z:  It presents the proﬁt or loss Z = Σ(CBmxBm) . 
· Cj − Zj: It presents the index row.

Step 3: Perform Optimality Test
· Calculate the elements of index row (Cj −Zj), if all the elements in index row are negative then, current solution is optimum basic solution, if not then go for next step.

Step 4: Iterate Towards an Optimal Solution
· If step 3 does not holds, then select a variable that has the largest Cj −Zj value to enter into the new solution. That is Ck − Zk = Max [(Cj − Zj); Cj − Zj ≥ 0]. The column to be entered is called the key or pivot column. Such variable indicates the largest per unit improvement in the current solution.
· Identify key or pivot row, corresponding to smallest non-negative ratio
found by dividing the values. That is xBr = Min xBi ; a > 0. It should

arj

arj	rj

be noted that division by negative or zero element is not permitted.
· Identify key element, the non-zero positive element at the intersection of key column and key row, circle the key element.
· Construct new simplex table by calculating the new values for the key row by dividing every element of the key row by the key element, if the key element is not 1, otherwise the key row remain unchanged.
· The new values of the elements in the remaining rows for the new simplex table can be obtained by performing elementary row operations on all rows so that all elements except the key element in the key column are zero. We use the following formula for the new row other than key row;
NewRowNo. = (No.inOldRow) − (AssociateNo.inKeyRow) ×
CorrespondingNo.inKeyColumn KeyElement.	Σ


Step 5: Repeat the Procedure
· Go to step 3 and repeat the procedure until either an optimal solution is reached or there is an indication of unbounded solution. We will see later on, how you can determine the unbounded solution for the given LPP.


Example 1: Solve the following LPP by using simplex method;

Max  Z = 6x1 + 4x2


Subject to
x1 + 2x2 ≤ 720 2x1 + x2 ≤ 780
x1 ≤ 320


Solution:


Step 1: Convert the Following LPP into Standard Form

Max Z = 6x1 + 4x2 + 0S1 + 0S2 + 0S3


Subject to

x1 + 2x2 + S1 = 720 2x1 + x2 + S2 = 780
x1 + S3 = 320



Step 2: Initial Basic Feasible Solution

x1 = 0 and x2  =  0  in  the  above  equation  then  we  have  S1  =  720, S2  = 780 and S3 = 320


Step 3: Perform the Optimality Test
Since all Cj − Zj ≥ 0(j = 1, 2), the current solution is not optimal. Variable x1 is chosen to enter into the basis as C1 − Z1 = 6 is the largest positive number in the x1 column, where all elements are positive. This means that for every unit of variable x1, the objective function will increase in value by 6. The x1 column is the key column.



[image: ]Table  4.1:  Initial Solution

	
	
	Cj −→
	6
	4
	0
	0
	0
	

	CB
	B
	b(= xB)
	x1
	x2
	S1
	S2
	S3
	Min.Ratio

	0
	S1
	720
	1
	2
	1
	0
	0
	720
	= 720

= 390
= 320 →

	
	
	
	
	
	
	
	
	1
	

	0
	S2
	780
	2
	1
	0
	1
	0
	780
	

	
	
	
	
	
	
	
	
	2
	

	0
	S3
	320
	1
	0
	0
	0
	1
	320
	

	
	
	
	
	
	
	
	
	1
	

	Z = 0 
	
	Zj =
	0
	0
	0
	0
	0
	

	
	
	Cj − Zj
	6
↑
	4
	0
	0
	0
	





Step 4: Determine the Variable to Leave the Basis

The variable to leave the basis is determined by dividing the value in the xB- (constant) column by their corresponding elements in the key column as shown in Table 4.1. Since the exchange ratio, 320 is minimum in row 3, the basic variable S3 is chosen to leave the solution basis.
Iteration 1:Since the key element enclosed in the circle in Table 4.1 is 1, this row remain unchanged. The new values of the elements in the remaining rows for the new Table is obtained by performing the following elementary row operations on all rows so that all elements except the key element 1 in the key column are zero.
R3(old)

R3(new) →



1(keyelement)

= (320, 1, 0, 0, 0, 1)

R2(new) → R2(old) − 2R3(new)
R2(new) → (780, 2, 1, 0, 1, 0) − 2(320, 1, 0, 0, 0, 1) = (140, 0, 1, 0, 1, −2)
R1(new) → R1(old) − 1R3(new)
R1(new) → (720, 1, 2, 1, 0, 0) − 1(320, 1, 0, 0, 0, 1) = (400, 0, 2, 1, 0, −1)


Then, the new improved solution is given in 4.2 below;
An improved basic feasible solution can be read from Table 4.2 as: x1 = 320, S2 = 140, S3 = 400 and x2 = 0. The improved value of objective function is Z=1920.
Once again, calculate values of Cj − Zj in the same manner as we have done to get the improved solution in Table 4.2 to see whether the solution is optimal or not. Since C2 − Z2 > 0, the current solution is not optimal.



[image: ]Table  4.2:  Improved Solution

	
	
	Cj −→
	6	4	0	0	0
	

	CB
	B
	b(= xB)
	x1 x2 S1 S2 S3
	Min.Ratio

	0

0
6
	S1 S2
x1
	400

140
320
	0	2	1	0	-1

0	1	0	1	-2
1	0	0	0	1
	400
= 200
2
140
= 140 →
1

	Z = 1920
	
	Zj =
	6	0	0	0	6
	

	
	
	Cj − Zj
	0	4	0	0	-6
↑
	




Iteration 2:Repeats steps 3 to 4. Table 4.3 is obtained by performing following row operations to enter x2 into the basis and to drive out S2 from the basis.
R2(old)

R2(new) →



1(key element)

= (140, 0, 1, 0, 1, −2)

R1(new) → R1(old) − 2R2(new)
R1(new) → (400, 0, 2, 1, 0, −1) − 2(140, 0, 1, 0, 1, −2) = (120, 0, 0, 1, −2, 3)
R3(new) → R3(old) − 0R2(new)
R3(new) → (320, 1, 0, 0, 0, 1) − 0(140, 0, 1, 0, 1, −2) = (320, 1, 0, 0, 0, 1)


Then, the improved solution for iteration 2 is given in Table 4.3 below;


Table  4.3:  Improved Solution

	
	
	Cj −→
	6	4	0	0	0
	

	CB
	B
	b(= xB)
	x1 x2 S1 S2 S3
	Min.Ratio

	0
4
6
	S1
x2 x1
	120
140
320
	0	0	1	-2	3
0	1	0	1	-2
1	0	0	0	1
	120
= 40 →
3

320
= 320
1

	Z = 2480
	
	Zj =
	6	4	0	4	-2
	

	
	
	Cj − Zj
	0	0	0	-4	2
↑
	




Iteration 3:Repeats steps 3 to 4. Table 4.4 is obtained by performing following


row operations to enter S3 into the basis and to drive out S1 from the basis.
R1(old)

R1(new) →



3(key element)

= (40, 0, 0, 1/3, −2/3, 1)

R2(new) → R2(old)+ 2R1(new)
R2(new) → (140, 0, 1, 0, 1, −2) + 2(40, 0, 0, 1/3, −2/3, 1) = (220, 0, 1, 2/3, −1/3, 0)
R3(new) → R3(old) − 1R1(new)
R3(new) → (320, 1, 0, 0, 0, 1) − 1(40, 0, 0, 1/3, −2/3, 1) = (280, 1, 0, −1/3, 2/3, 0)


Then, the improved solution for iteration 2 is given in Table 4.4 below;


Table 4.4: Optimal Solution

	
	
	Cj −→
	6	4	0	0	0
	

	CB
	B
	b(= xB)
	x1       x2	S1	S2	S3
	Min.Ratio

	0
4
6
	S3
x2 x1
	40
220
280
	0	0	1/3    -2/3	1
0	1	2/3    -1/3	0
1	0	-1/3    2/3	0
	

	Z = 2560
	
	Zj =
	6	4	2/3	8/3	0
	

	
	
	Cj − Zj
	0	0	-2/3   -8/3	0
	




Since all Cj − Zj ≤ 0 corresponding to non - basic variables columns, the current solution cannot be improved further. This means that the current basic feasible solution is also the optimal solution. Thus, x1  = 280, x2  = 220 and the value of objective function is Z=2560. Example 2: Use the simplex method to solve following LP problem.


Max Z = 6x1 + 17x2 + 10x3


Subject to
x1 + x2 + 4x3 ≤ 2000 2x1 + x2 + x3 ≤ 3600 x1 + 2x2 + 2x3 ≤ 2400
x1 ≤ 30


and

x1, x2, x3 ≥ 0
Solution:

   Convert the Following LPP into Standard Form

Max Z = 6x1 + 17x2 + 10x3 + 0S1 + 0S2 + 0S3 + 0S4


Subject to

x1 + x2 + 4x3 + S1 = 2000 2x1 + x2 + x3 + S2 = 3600 x1 + 2x2 + 2x3 + S3 = 2400
x1 + S4 = 30


and
x1, x2, x3, S1, S2, S3, S4 ≥ 0

   Initial Basic Feasible Solution
An initial basic feasible solution is obtained by setting x1 = x2 = x3 = 0. Thus, the initial solution is: S1 = 2000, S2 = 3600, S3 = 2400, S4 = 30 and Max Z = 0. The solution can also be read from the initial simplex Table 4.5.


[image: ]Table  4.5:  Initial Solution

	
	
	Cj −→
	6
	17
	10
	0
	0
	0
	0
	

	CB
	B
	b(= xB)
	x1
	x2
	x3
	S1
	S2
	S3
	S4
	Min.Ratio

	0
	S1
	2000
	1
	1
	4
	1
	0
	0
	0
	2000

1
3600

1
2400

2
−
	= 2000

	0
	S2
	3600
	2
	1
	1
	0
	1
	0
	0
	
	= 3600

	0
	S3
	2400
	1
	2
	2
	0
	0
	1
	0
	
	= 1200 →

	0
	S4
	30
	1
	0
	0
	0
	0
	0
	1
	
	

	Z = 0 
	
	Zj =
	0
	0
	0
	0
	0
	0
	0
	

	
	
	Cj − Zj
	16
	17
↑
	10
	0
	0
	0
	0
	




   Perform the Optimality Test
Since all Cj − Zj ≥ 0, the current solution is not optimal. Variable x2 is chosen to enter into the basis as C2 − Z2 = 17 is the largest positive number in the x2 column. We apply the following row operations to get a new improved solution and removing S3 from the basis.
R3(old)

R3(new) −→



2(key element)

= (1200, 1/2, 0, 0, 0, 1, −1/2, 0)

R1(new) −→ R1(old) − R3(new) = (800, 1/2, 0, 3, 1, 0, −1/2, 0)
R2(new) −→ R2(old) − R3(new) = (2400, 3/2, 0, 0, 0, 1, −1/2, 0)
R4(new) −→ R4(old) = (30, 1, 0, 0, 0, 0, 0, 1)


The new solution is shown in Table 4.6


Table  4.6:  Improved Solution

	
	
	Cj −→
	6	17    10	0	0	0	0
	

	CB
	B
	b(= xB)
	x1	x2        x3      S1       S2	S3	S4
	Min.Ratio

	0

0

17

0
	S1 S2
x2

S4
	800

2400

1200

30
	1/2	0	3	1	0	-1/2	0

3/2	0	0	0	1	-1/2	0

1/2	1	1	0	0	1/2	0

1	0	0	0	0	0	1
	800
= 1600
1/2
2400
= 1600
3/2
1200
= 2400
1/2
30
= 30 →
1

	Z = 20, 000
	
	Zj =
	17/2    17    17	0	0	17/2	0
	

	
	
	Cj − Zj
	15/2	0	-7	0	0	-17/2	0
↑
	




[image: ]The solution shown in Table 4.6 is not optimal because C1 −Z1 = 15/2 which is positive in x1 column. Thus, applying the following row operations to get new improved solution by entering variable x1 into the basis and removing the variable S4 from the basis.


R4(new) →

R4(old) 1(key element)


= (30, 1, 0, 0, 0, 0, 0, 1)

R1(new) → R1(old) − (1/2)R4(new) = (785, 0, 0, 3, 1, 0, −1/2, −1/2)
R2(new) → R2(old) − (3/2)R4(new) = (2355, 0, 0, 0, 0, 1, −1/2, −3/2)
R3(new) → R3(old) − (1/2)R4(new) = (1185, 0, 1, 1, 0, 0, 1/2, −1/2)



Table  4.7:  Optimal Solution

	
	
	Cj −→
	6	17    10	0	0	0	0

	CB
	B
	b(= xB)
	x1        x2        x3      S1       S2	S3	S4

	0
0
17
16
	S1 S2
x2
x1
	785
2355
1185
30
	0	0	3	1	0	-1/2	-1/2
0	0	0	0	1	-1/2	-3/2
0	1	1	0	0	1/2	-1/2
1	0	0	0	0	0	1

	Z = 20, 625
	
	Zj =
	16    17    17	0	0	17/2	15/2

	
	
	Cj − Zj
	0	0	-7	0	0	-17/2 -15/2




Then, the improved solution for this iteration is given in Table 4.7 below;
Since all Cj − Zj ≤ 0 corresponding to non - basic variables columns, the current solution cannot be improved further. This means that the current basic feasible solution is also the optimal solution. Thus, x1 = 30, x2 = 1, 185 and x3 = 0 to obtain the maximum value of Z=20,625.

Activities

1. A manufacturer of leather belts makes three types of belts A,B and C which are processed on three machines M1, M2 and M3. Belts A requires 2 hours on machines M1 and 3 hours on machine M2 and 2 hours on machine M3. Belts B requires 3 hours on machine M1, 2 hours on machine M2 and 2 hours on machine M3 and Belt C requires 5 hours on machine M2 and 4 hours on machine M3. There are 8 hours of time per day available on machine M1, 10 hours of time per day available on machine M2 and 15 hours of time per day available on machine M3. The proﬁt gained from belt A is 3 USD per unit, from belt B is 5 USD per unit, from belt C is 4 USD per unit. What should be the daily production of each type of belt so that the proﬁt is maximum?
2. A farmers has 1,000 acres of land on which he can grow corn, wheat or soyabean. Each acre of corn costs 100 USD for preparation, requires 7 men- days of work and yields a proﬁt of 30 USD. An acre of wheat costs USD 120 to prepare, requires 10 men-days of work and yields a proﬁt of 40 USD. An acre of soyabean costs 70 USD to prepare, requires 8 men-days of work and yields a proﬁt of 20 USD. If the farmer has 1,000,000 for preparation and can count on 8,000 men-days of work, determine how many acres should be allocated to each crop to maximize proﬁts?


4.3.2 Minimization Case

In certain cases it is diﬃcult to obtain an initial basic feasible solution, such case arise;

   When the constraints are of the ≤ type
n
aijxj ≤ bi, xj ≥ 0Σ

j=1
but some right-hand side constants are negative (bi < 0). In this case, after adding the non-negative slack variable Si, the initial solution so obtained will be Si = −bi for some i. It is not the feasible solution because it violates the non-negativity condition of slack variables.
   When the constraints are of ≥ type
n
aijxj ≥ bi, xj ≥ 0Σ

j=1

   In this case to convert the inequalities into equation form, add surplus (neg- ative slack) variables
n
aijxj − Si = bi, xj, Si ≥ 0Σ

j=1

   Letting xj = 0, we get an initial solution −Si = bi or Si  = −bi.  It is also  not a feasible solution as it violates the non-negativity condition of surplus variables.
   In this case we add artiﬁcial variables Ai to get an initial basic feasible solution. The resulting system of equations then becomes;
n
aijxj − Si + Ai = bi, xj, Si, Ai ≥ 0,i = 1, 2, 3, ..., mΣ

j=1
and has m equations and (n + m + m) variables (i.e n-decision variables, m artiﬁcial variables and m surplus variables).
   To get back to the original problem, artiﬁcial variables must be dropped out of the optimal solution. There are two methods for eliminating these variables from the solution
1. Two - Phase Method
2. Big-M Method or Method of Penalties.


4.3.3 The Two-Phase Method

   In the ﬁrst phase of this method the sum of all artiﬁcial variables is minimized subject to the given constraints to get a basic feasible solution of the LPP.
   The second phase minimizes the original objective function starting with the basic feasible solutio obtained at the end of the ﬁrst phase. The steps of the algorithm is given bellow;

Phase I:

1. (a) If all the constraints in the given LPP are ≤ type then go to Phase
II. Otherwise, add some surplus and artiﬁcial variables to get equality con- straints.
(b) If the given LPP is of minimization then convert to maximization.
2. Assign zero coeﬃcients to each of the decision variables xj and to the surplus variables and assign -1 coeﬃcient to each of the artiﬁcial variables. This yields the following auxiliary LPP;





subject to


Max Z∗

m
=	(−1)AiΣ

i=1


n
aijxj + Ai = bi, xj, Ai ≥ 0,i = 1, 2, 3, ..., mΣ

j=1

3. Apply the simplex algorithm to solve this auxiliary LPP. The following three cases may arise at optimality;
   Max Z = 0 and atleast one artiﬁcial variable is present in the basis with positive value. Then no feasible solution exists for the original LPP.∗

   Max Z   = 0 and no artiﬁcial variable is present in the basis.  Then the basis consists of only decision variables xJ s and hence we may move to Phase II to obtain an optimal basic feasible solution on the original LPP.∗
j

   Max Z = 0 and atleast one artiﬁcial variable is present in the basis at zero value. Then a feasible solution to the above LPP is also a feasible solution to the original LPP. Now we may proceed direct to Phase II.∗


Phase II:


   Assign actual coeﬃcients to the variables in the objective function and zero to the artiﬁcial variables which appear at zero value in the basis at the end of Phase I. Then apply the usual simplex algorithm to the modiﬁed simplex table to get optimal solution to the original problem. Artiﬁcial variables which do not appear in the basis may be removed.

Example 1:Solve the following LP model using Two-Phase Method;
Max Z = 5x1 − 4x2 + 3x3

subject to





and


Solution:



2x1 + x2 − 6x3 = 20
6x1 + 5x2 + 10x3 ≤ 76
8x1 − 3x2 + 6x3 ≤ 50


x1, x2, x3 ≥ 0


   After adding surplus variables S1 and S2 and artiﬁcial variable A1 the prob- lem becomes;



subject to





and


Phase I:

Max Z = 5x1 − 4x2 + 3x3


2x1 + x2 − 6x3 + A1 = 20
6x1 + 5x2 + 10x3 + S1 = 76
8x1 − 3x2 + 6x3 + S2 = 50


x1, x2, x3, S1, S2, A1 ≥ 0

   Construction of Auxiliary LP model
∗
Max  Z  = −A1

subject to



2x1 + x2 − 6x3 + A1 = 20
6x1 + 5x2 + 10x3 + S1 = 76
8x1 − 3x2 + 6x3 + S2 = 50


and

x1, x2, x3, S1, S2, A1 ≥ 0

   Solution of an Auxiliary LP model

[image: ]Table 4.8: Initial Solution

	
	
	Cj
	−→
	0
	0
	0
	-1
	0
	0
	

	CB
	B
	b(= xB)
	x1
	x2
	x3
	A1
	S1
	S2
	Min.Ratio

	-1
	A1
	20
	2
	1
	-6
	1
	0
	0
	20
	= 10

= 12.66
= 6.25 →

	
	
	
	
	
	
	
	
	
	2
	

	0
	S1
	76
	6
	5
	10
	0
	1
	0
	76
	

	
	
	
	
	
	
	
	
	
	6
	

	0
	S2
	50
	8
	-3
	6
	0
	0
	1
	50
	

	
	
	
	
	
	
	
	
	
	8
	

	Z = −20
	
	Zj =
	-2
	-1
	6
	-1
	0
	0
	

	
	
	Cj − Zj
	2
↑
	1
	-6
	0
	0
	0
	





   Slack variable S2 is removed from the basis since it has minimum ratio and variable x1 is entering the basis since it has highest positive value into Cj −Zj row.
Iteration 1: The improved solution is obtained by performing the following elementary row operations.


R3(new) →

R3(old) 8(key element)


= (25/4, 1, −3/8, 3/4, 0, 0, 1/8)

R1(new) → R1(old) − (2)R3(new) = (15/2, 0, 7/4, −15/2, 1, 0, −1/4)
R2(new) → R2(old) − (6)R3(new) = (77/2, 0, 29/4, 11/2, 0, 1, −3/4)


   The improved solution is given in Table 4.9
Iteration 2: To remove A1 from the solution shown in Table 4.9 above, enter x2 in the basis by applying the following elementary row operations.
R1(old)

R1(new) →



7/4(key element)

= (30/7, 0, 1, −30/7, 4/7, 0, −1/7)

R2(new) → R2(old) − (29/4)R1(new) = (52/7, 0, 1, 256/7, 1, 2/7)
R3(new) → R3(old) − (−3/8)R1(new) = (55/7, 1, 0, −6/7, 3/4, 0, 1/14)


   The improved solution is given in Table 4.10



Table  4.9:  Improved Solution

	
	
	Cj −→
	0	0	0	-1	0	0
	

	CB
	B
	b(= xB)
	x1	x2	x3	A1       S1	S2
	Min.Ratio

	-1

0

0
	A1 S1
x1
	15/2

77/2

25/4
	0	7/4	-15/2	1	0	-1/4

0	29/4    11/2	0	1	-3/4

1	-3/8	3/4	0	0	1/8
	15/2
= 30/7 →
7/4
77/2
= 154/29
29/4
-

	Z = −15/2
	
	Zj =
	0	-7/4	15/2	-1	0	1/4
	

	
	
	Cj − Zj
	0	7/4	-15/2	0	0	-1/4
↑
	




Table  4.10:  Improved Solution

	
	
	Cj −→
	0	0	0	-1	0	0

	CB
	B
	b(= xB)
	x1       x2	x3	A1	S1	S2

	0
0
0
	x2 S1
x1
	30/7
52/7
55/7
	0	1	-30/7	4/7	0	-1/7
0	1	256/7   -29/7	1	2/7
1	0	-6/7	3/4	0	1/14

	Z = 0 
	
	Zj =
	0	0	0	0	0	0

	
	
	Cj − Zj
	0	0	0	-1	0	0




   Since all Cj − Zj ≤ 0 an optimal solution to the auxiliary LP model has been obtained and Max Z=0 with no artiﬁcial variable in the basis.
item However, this solution may or may not be the basic feasible solution to the original LPP. Thus, go to Phase II to get an optimal solution to our original LPP.
Phase II
   The modiﬁed simplex table from Table 4.10 is as follows;
   Since all Cj − Zj ≤ 0 for all non-basic variables, the current basic feasible solution is also optimal. Hence, an optimum feasible solution to the given LPP is x1 = 55/7, x2 = 30/7, x3 = 0, S1 = 52/7, S2 = 0, S3 = 0 and Max.  Z = 155/7.

Example 2: Solve the following LPP by using two-phase method;
Min Z = x1 − 2x2 − 3x3



Table 4.11: Modiﬁed Simplex Table

	
	
	Cj −→
	5	-4	0	0	0

	CB
	B
	b(= xB)
	x1       x2	x3	S1	S2

	-4
0
5
	x2 S1
x1
	30/7
52/7
55/7
	0	1	-30/7	0	-1/7
0	1	256/7	1	2/7
1	0	-6/7	0	1/14

	Z = 155/7
	
	Zj =
	5	-4	90/7	0	13/14

	
	
	Cj − Zj
	0	0	-69/7	0	-13/14





subject to



and


Solution:



−2x1 + 3x2 + 3x3 = 2 2x1 + 3x2 + 4x3 = 1 


x1, x2, x3 ≥ 0


   After converting the objective function into maximization and adding arti- ﬁcial variables A1 and A2 in the constraints of the given LPP, the problem becomes;



subject to



and


Phase I:

∗
Max Z = −x1 + 2x2 + 3x3


−2x1 + 3x2 + 3x3 + A1 = 2 2x1 + 3x2 + 4x3 + A2 = 1 


∗
x1, x2, x3, A1, A2 ≥ 0 where Z = −Z

   Construction of Auxiliary LP model
∗
Max  Z  = −A1 − A2

subject to



−2x1 + 3x2 + 3x3 + A1 = 2 2x1 + 3x2 + 4x3 + A2 = 1 


and

x1, x2, x3, A1, A2 ≥ 0

   The initial solution of an Auxiliary LPP is given bellow;

[image: ]Table  4.12:  Initial Solution

	
	
	Cj
	−→
	0
	0
	0
	-1
	-1
	

	CB
	B
	b(= xB)
	x1
	x2
	x3
	A1
	A1
	Min.Ratio

	-1
	A1
	2
	-2
	1
	3
	1
	0
	2
= 0.67
1 3
= 0.25 →
4

	-1
	A2
	1
	2
	3
	4
	0
	1
	

	Z∗ = −3
	
	Zj =
	0
	-4
	-7
	-1
	-1
	

	
	
	Cj − Zj
	0
	4
	7
↑
	0
	0
	





   Artiﬁcial variable A2 is removed from the basis since it has minimum ratio and variable x3 is entering the basis since it has highest positive value into Cj − Zj row.
Iteration 1: The improved solution is obtained by performing the following
elementary row operations.


R2(new) →

R2(old) 4(key element)


= (1/4, 1/2, 3/4, 1, 0)

R1(new) → R1(old) − (3)R2(new) = (5/4, −7/2, −5/4, 0, 1)


   The improved solution so obtained is given in Table 4.13. Since in Table 4.13, Cj − Zj ≤ 0 corresponds to non-basic variables, the optimal solution is x1 = 0, x2 = 0, x3 = 1/4, A1 = 5/4 and A2 = 0 with Max Z∗ = −5/4.  But  at the same time, the value of Z∗ < 0 and the artiﬁcial variable A1 appears in the basis with positive value 5/4. Hence the given original LPP does not possess any feasible solution.

Activity


1. Use two phase method to solve the following LP problems;
(a) Min Z = x1 − 2x2 − 3x3















subject to


Table 4.13: Optimal but not Feasible Solution

	
	
	Cj −→
	0	0	0	-1	-1

	CB
	B
	b(= xB)
	x1	x2	x3 A1 A1

	-1
0
	A1
x3
	5/4
1/4
	-7/2   -5/4	0	1	0
1/2	3/4	1	0	1

	Z∗ = −3
	
	Zj =
	7/2	5/4	0	-1	-1

	
	
	Cj − Zj
	-7/2    -5/4	0	0	0




−2x1 + x2 + 2x3 = 2 2x1 + 3x2 + 2x3 = 1 

and

x1, x2, x3 ≥ 0

(b) Min Z = 2x1 + x2 + x3

subject to

4x1 + 6x2 + 3x3 = 8 
3x1 − 6x2 − 4x3 = 1 
2x1 + 3x2 − 5x3 = 4 
and

x1, x2, x3 ≥ 0

4.3.4 The Big - M Method

The Big - M method is another method of removing artiﬁcial variables from the basis. In this method we assign coeﬃcients to artiﬁcial variables, undesirable from the objective function. If objective function Z is to be minimized, then a very large positive price (called penalty) is assigned to each artiﬁcial variable. Similarly, if Z is to be maximized, then a very large negative price (also called penalty) is assigned to each of these variables.   The penalty will designated by
−M for a maximization problem and +M for a minimization problem, where
M > 0. The following are steps of the Algorithm for solving LPP by the Big - M method;


(i) Express the LPP in the standard form by adding slack variables, surplus variables and artiﬁcial variables. Assign a zero coeﬃcient to both slack and surplus variables and a very large positive coeﬃcient +M (for min. case) and −M (for max. case) to artiﬁcial variable in the objective function.
(ii) The initial basic feasible solution is obtained by assigning zero value to orig- inal variables.
(iii) Calculate the value of Cj − Zj in last row of simplex table and examine these values.
· If all Cj − Zj ≥ 0 then the current basic feasible solution is optimal.
· If for a column k, Ck − Zk is most negative and all entries in this column are negative, then the problem has unbounded optimal solution.
· If one or more Cj − Zj < 0 (minimization case), then select the variable to enter into the basis with the largest negative Cj − Zj value. That is Ck − Zk = Min{Cj − Zj} : Cj − Zj < 0.
(iv) Determine the key row and key element in the same manner as discussed in the simplex algorithm of the maximization case.
Remarks
At any iteration of the simplex algorithm any one of the following cases may arise;
1. If at least one artiﬁcial variable is present in the basis with zero coeﬃcient of M in each case Cj −Zj ≥ 0, then the given LPP has no solution. That is, the current basic feasible solution is degenerate.
2. If at least one artiﬁcial variable is present in the basis with positive value and the coeﬃcient of M in each Cj − Zj ≥ 0, then given LPP has no optimum basic feasible solution. In this case the given LPP has a pseudo optimum basic feasible solution.

Example 1:Solve the following LPP using penalty (Big - M) method;
Max Z = x1 + 2x2 + 3x3 − x4
subject to

x1 + 2x2 + 3x3 = 15 2x1 + x2 + 5x3 = 20
x1 + 2x2 + x3 + x4 = 10



and


Solution:


x1, x2, x3 ≥ 0



   Since all constraints of the given LPP are equation, therefore adding only artiﬁcial variables A1 and A2 in the constraints. The standard form of the problem becomes;
Max Z = x1 + 2x2 + 3x3 − x4 − MA1 − MA2

subject to




and


x1 + 2x2 + 3x3 + A1 = 15 2x1 + x2 + 5x3 + A2 = 20 x1 + 2x2 + x3 + x4 = 10

x1, x2, x3, A1, A2 ≥ 0

   The initial basic feasible solution is given in Table4.14 below;

[image: ]Table  4.14:  Initial Solution

	
	
	Cj
	−→
	1
	2
	3
	-1
	-M
	-M
	

	CB
	B
	b(= xB)
	x1
	x2
	x3
	x4
	A1
	A2
	Min.Ratio

	-M
	A1
	15
	1
	2
	3
	0
	1
	0
	15
= 5 
3
20
= 4 →
5
10
= 10
1

	-M
	A2
	20
	2
	1
	5
	0
	0
	1
	

	-1
	x4
	10
	1
	2
	1
	1
	0
	0
	

	Z = −35M − 10
	
	Zj =
	-3M-1
	-3M-2
	-8M-1
	-1
	-M
	-M
	

	
	
	Cj − Zj
	3M+2
	3M+4
	8M+4
↑
	0
	0
	0
	




   Since the value of C3 − Z3 in Table 4.14 has largest positive value the variable x3 is chosen to enter into the basis. To get an improved basic feasible solution, apply the following row operations and removing A2 from the basis.
R2(old)

R2(new) →



5(key element)

= (4, 2/5, 1/5, 1, 0, 0)

R1(new) → R1(old) − (3)R2(new) = (3, −1/5, 7/5, 0, 0, 1)
R3(new) → R3(old) − (1)R1(new) = (6, 3/5, 9/5, 0, 1, 0)


   The improved solution is shown in Table 4.15

Table  4.15:  Improved Solution

	
	
	Cj −→
	1	2	3	-1 -M
	

	CB
	B
	b(= xB)
	x1	x2	x3 x4 A1
	Min.Ratio

	-M 3
-1
	A1
x3 x4
	3

4

6
	-1/5	7/5	0	0	1

2/5	1/5	1	0	0

3/5	9/5	0	1	0
	3
= 15/7 →
7/5
4
= 20
1/5
6
= 30/9
9/5

	Z = −3M +6 
	
	Zj =
	(M/5)-3/5	-(7M/5)-6/5	3	-1 -M
	

	
	
	Cj − Zj
	-(M/5)-2/5   (7M/5)+16/5	0	0	0
↑
	





   The solution shown in Table 4.15 is not optimal because C2 − Z2 is positive. Thus, applying the following row operations for entering variable x2 into the basis and removing variable A1 from the basis.
R1(old)

R1(new) →



7/5(key element)

= (15/7, −1/7, 1, 0, 0)

R2(new) → R2(old) − (1/5)R1(new) = (25/7, 3/7, 0, 1, 0)
R3(new) → R3(old) − (9/5)R1(new) = (15/7, 6/5, 0, 0, 1)


   The new solution is shown in Table 4.16

Table  4.16:  Improved Solution

	
	
	Cj −→
	1	2	3	-1
	

	CB
	B
	b(= xB)
	x1	x2 x3 x4
	Min.Ratio

	2
3

-1
	x2 x3
x4
	15/7
25/7

15/7
	-1/7	1	0	0
3/7	0	1	0

6/7	0	0	1
	-
25/7
= 25/3
3/7
15/7
= 5/2 →
6/7

	Z = 90/7
	
	Zj
	1/7	2	3	-1
	

	
	
	Cj − Zj
	6/7	0	0	0
↑
	




   Again, the solution shown in Table 4.16 is not optimal. Thus, applying the following row operations by entering x1 into the basis and removing variable x4 from the basis.

R3(new) →

R3(old) 6/7(key element)


= (15/6, 1, 0, 0, 7/6)

R2(new) → R2(old) − (3/7)R3(new) = (15/6, 0, 0, 1, −1/2)
R1(new) → R1(old) − (−1/7)R3(new) = (15/6, 0, 1, 0, 1/6)


   The new solution is shown in Table 4.17

Table 4.17: Optimal Solution

	
	
	Cj −→
	1	2	3	-1

	CB
	B
	b(= xB)
	x1    x2    x3	x4

	2
3
1
	x2
x3 x1
	15/6
15/6
15/6
	0	1	0	1/6
0	0	1	-1/2
1	0	0	7/6

	Z = 15
	
	Zj
	1	2	3	0

	
	
	Cj − Zj
	0	0	0	-1




Since all Cj − Zj ≤ 0 in Table 4.17. Thus, an optimal solution has been arrived with values of variables as x1 = 15/6, x2 = 15/6, x3 = 15/6, x4 = 0 and Max Z = 15.
Example 2:Solve the following LPP using penalty (Big - M) method;
Main Z = 600x1 + 500x2
subject to
2x1 + x2 ≥ 80
x1 + 2x2 ≥ 60
and
x1, x2 ≥ 0
Solution:
   By introducing surplus variables S1 and S2 and artiﬁcial variables A1 and A2
in the constraints. The standard form of the problem becomes;
Main Z = 600x1 + 500x2 + 0S1 + 0S2 + MA1 + MA2


subject to

2x1 + x2 − S1 + A1 = 80
x1 + 2x2 − S2 + A2 = 60
and

x1, x2, S1, S2, A1, A2 ≥ 0

   The initial basic feasible solution is obtained by setting x1 = x2 = S1 = S2 = 0 as shown in Table4.18;

[image: ]Table 4.18: Initial Solution

	
	
	Cj
	−→
	600
	500
	0
	0
	M
	M
	

	CB
	B
	b(= xB)
	x1
	x2
	S1
	S2
	A1
	A2
	Min.Ratio

	M
	A1
	80
	2
	1
	-1
	0
	1
	0
	80
= 80
1
60
= 30 →
2

	M
	A2
	60
	1
	2
	0
	-1
	0
	1
	

	Z = 140M
	
	Zj
	3M
	3M
	-M
	-M
	M
	M
	

	
	
	Cj − Zj
	600-3M
	500-3M
↑
	M
	M
	0
	0
	





   Since the value of C2 − Z2 in Table 4.18 has largest negative value, therefore enter variable x2 to replace basic variable A2 into the basis. To get an improved basic feasible solution, apply the following row operations.
R2(old)

R2(new) →



2(key element)

= (30, 1/2, 1, 0, −1/2, 0)

R1(new) → R1(old) − (1)R2(new) = (50, 3/2, 0, −1, 1/2, 1)


   The improved solution is shown in Table 4.19
   The solution shown in Table 4.19 is not optimal because C1 − Z1 is largest negative. Thus, applying the following row operations by entering variable x1 into the basis and removing variable A1 from the basis.
R1(old)

R1(new) →



3/2(key element)

= (100/3, 1, 0, −2/3, 1/3)

R2(new) → R2(old) − (1/2)R1(new) = (40/3, 0, 1, 1/3, −2/3)



Table 4.19: Improved Solution


	
	
	Cj
	−→
	600
	500
	0
	0
	M
	

	CB
	B
	b(= xB)
	x1
	x2
	S1
	S2
	A1
	Min.Ratio

	M
	A1
	50
	3/2
	0
	-1
	1/2
	1
	50
= 33.33 →
3/2
30
= 60
1/2

	500
	x2
	30
	1/2
	1
	0
	-1/2
	0
	

	Z = 15000 + 50M
	
	Zj
	(3M/2)+250
	500
	-M
	(M/2)-250
	M
	

	
	
	Cj − Zj
	350-3M
↑
	0
	M
	250-M/2
	0
	




Table 4.20: Optimal Solution

	
	
	Cj −→
	600   500	0	0

	CB
	B
	b(= xB)
	x1	x2	S1	S2

	600
500
	x1
x2
	100/3
40/3
	1	0	-2/3	1/3
0	1	1/3	-2/3

	Z = 80, 000/3
	
	Zj
	600 500 -700/3 -400/3

	
	
	Cj − Zj
	0	0	700/3	400/3




   The new solution is shown in Table 4.20
   In Table 4.20, all the numbers in the Cj − Zj row are either zero or positive and also both artiﬁcial variables have been reduced to zero, an optimum solution has been arrived at with x1 = 100/3, x2 = 40/3 and total minimum cost, Z = 80, 000/3.

Activity

1. Use Big - M method to solve the following LPP.

Max Z = 8x1 + 15x2 + 25x3 + x4

subject to

x1 + 2x2 + 3x3 = 15 2x1 + x2 + 5x3 = 20
x1 + 2x2 + x3 + x4 = 10


and

x1, x2, x3, x4 ≥ 0

2. Use Big - M method to solve the following LPP.

Max Z = 12x1 + 20x2 + 18x3 + 40x4

subject to
4x1 + 9x2 + 7x3 + 10x4 ≤ 6000
x1 + x2 + 3x3 + 40x4 ≤ 4000
and
x1, x2, x3, x4 ≥ 0


4.4 Degeneracy in Simplex Method

A basic feasible solution of a simplex method is said to be degenerate basic feasible solution if at least one of the basic variable is zero and at any iteration of the simplex method more than one variable is eligible to leave the basis and hence the next simplex iteration produces a degenerate solution in which at least one basic variable is zero. This concept is known as tie.
A situation may arise at any iteration when two or more columns may have exactly the same Cj − Zj  value  (+ve or -ve depending on the type of LPP).     In order to break this tie, the selection for key column (entering variable) can be made arbitrary,. However, the number of iterations required to arrive at the optimal solution can be minimized by adopting the following rules;

   If there is a tie between two decision variables, then the selection can be made arbitrarily.
   If there is a tie between decision variable and slack (or surplus) variable, then select the decision variable to enter into the basis ﬁrst.
   If there is a tie between two slack (or surplus) variables, then selection can be made arbitrarily.

Again, while solving LPP the situation may arise in which there is a tie between two or more basic variables for leaving the basis i.e minimum ratio to identify the basic variable to leave the basis is not unique or values of one or more basic


variables in the solution values column (xB) become equal to zero. This causes the problem of degeneracy. However, if minimum ration is zero, then the iterations of simplex method are repeated (cycle) indeﬁnitely without arriving at the optimal solution.
In most of the cases when there is a tie in the minimum ratios,  the selection  is made arbitrarily. However, the number of iterations required to arrive at the optimal solution can be minimized by applying the following rules;

   Divide the coeﬃcients of slack variables in the simplex table where degener- acy is detected by the corresponding positive numbers of the key column in the row, starting from left to right.
   The row which contains smallest ratio comparing from left to right column- wise becomes the key row.

Remark:When there is a tie between a slack and artiﬁcial variables to leave the basis, the preference shall be given to artiﬁcial variable to leave the basis and there is no need to apply the procedure for resolving degeneracy under such cases.
Example: Solve the following LPP
Max  Z = 3x1 + 9x2

subject to the constraints



and


Solution:



x1 + 4x2 ≤ 8
x1 + 2x2 ≤ 4

x1, x2 ≥ 0



   Adding slack variables S1 and S2 to the constraints, the problem can be expressed as;
Max Z = 3x1 + 9x2 + 0S1 + 0S2
subject to the constraints




and

x1 + 4x2 + S1 = 8 
x1 + 2x2 + S2 = 4 


x1, x2, S1, S2 ≥ 0


   The initial basic feasible solution is given in Table 4.21

Table  4.21:  Initial Solution

	
	
	Cj
	−→
	3
	9
	0
	0
	

	CB
	B
	b(= xB)
	x1
	x2
	S1
	S2
	Min.Ratio

	0
	S1
	8
	1
	4
	1
	0
	8
	= 2 

= 2 

	
	
	
	
	
	
	
	4
	

	0
	S2
	4
	1
	2
	0
	1
	4
	

	
	
	
	
	
	
	
	2
	

	Z = 0 
	
	Zj
	0
	0
	0
	0
	

	
	
	Cj − Zj
	3
	9
↑
	0
	0
	





   from the Table 4.21, C2 − Z2 is the largest positive value, therefore variable x2 is selected to enter into the basis. However, both variables S1 and S2. This is an indication of the existence of degeneracy. To obtain the unique key row, apply the following procedure for resolving degeneracy.
   Write coeﬃcients of the slack variables as follows;

	
Row
	Column
S1
	
S2

	S1
	1
	0

	S2
	0
	1


   Dividing the coeﬃcients by the corresponding element of the key column, we obtain the following ratios;

	
Row
	Column
S1
	
S2

	S1
	1/4=1/4
	0/4=0

	S2
	0/2=0
	1/2=1/2


   Comparing the ratios of the previous step from left to right column-wise, the minimum ratio occurs for the second row. Therefore, the variable S2 is selected to leave the basis. The new solution is obtain by performing the following row operations and shown in Table 4.22
R2(old)

R2(new) −→



2(keyelement)

= (2, 1/2, 1, 0, 1/2)

R1(new) −→ R1(old) − 4R2(new) = (0, −1, 0, 1, −2)



Table  4.22:  Optimal Solution

	
	
	Cj −→
	3	9	0	0

	CB
	B
	b(= xB)
	x1	x2    S1	S2

	0
9
	S1
x2
	0
2
	-1	0	1	-2
1/2	1	0	1/2

	Z = 18
	
	Zj
	9/2	9	0	9/2

	
	
	Cj − Zj
	-3/2	0	0	-9/2




   Since all Cj − Zj ≤ 0 in Table 4.22. Therefore, an optimal solution is arrived at x1 = 0, x2 = 2 and Max Z = 18.


4.5 Types of Linear Programming Solution

4.5.1 Alternative (Multiple) Optimal Solution

The alternative optimal solution can be obtained by considering the Cj −Zj row of the simplex table. We know that an optimal solution to a maximization problem is reached if all Cj − Zj ≤ 0. What will happen if Cj − Zj = 0 for some non-basic variable columns in the optimal simplex table? Each entry in the Cj −Zj indicates the contribution per unit of a particular variable in the objective function value if is entered into the basis. Thus, if a non-basic variable corresponding to which Cj − Zj = 0 is entered into the basis, a new solution will be arrived at but the value of the objective function will not change.
Example: Solve the following LPP;
Max  Z = 6x1 + 4x2
subject to the constraints
2x1 + 3x2 ≤ 30
3x1 + 2x2 ≤ 24
x1 + x2  ≥ 3
and
x1, x2 ≥ 0
Solution:

   Adding slack variables S1, S2, surplus variable S3 and artiﬁcial variable A1


in the constraint set the LPP becomes;
Max Z = 6x1 + 4x2 + 0S1 + 0S2 + S3 − MA1
subject to the constraints

2x1 + 3x2 + S1 = 30
3x1 + 2x2 + S2 = 24
x1 + x2 − S3 + A1 = 3 
and
x1, x2, S1, S2, S3, A1 ≥ 0

   The optimal solution for this LPP is presented in Table 4.23

[image: ]Table  4.23:  Optimal Solution

	
	
	Cj −→
	6	4	0	0	0
	

	CB
	B
	b(= xB)
	x1	x2	S1	S2	S3
	Min.Ratio

	0

0
6
	S1 S3
x1
	14

5
8
	0	5/3	1	-2/3	0

0	-1/3	0	1/3	1
1	2/3	0	1/3	0
	14
= 42/5 →
15/3
-
8
= 12
2/3

	Z = 48
	
	Zj
	6	4	0	2	0
	

	
	
	Cj − Zj
	0	0	0	-2	0
↑
	





   The optimal solution shown in Table 4.23 is x1 = 8, x2 = 0 and Max Z=48.
   From the Table 4.23, C2 − Z2 = 0 corresponding to a non-basic variable, x2 = 0. Thus, an alternative optimal solution can also be obtained by entering variable x2 into the basis and removing S1 from the basis. The new solution is shown in Table 4.24
   The optimal solution shown in Table 4.24 is x1 = 12/5, x2 = 42/5 and Max Z=48.
   Further observe that in Table 4.24, C3 − Z3 = 0 and variable S1 is not in the basis. This again indicates that an alternative optimal solution exists, thus for each alternative solution (inﬁnite number of solutions) the value of objective function will remain the same.



Table  4.24:  Alternative Solution

	
	
	Cj −→
	6	4	0	0	0

	CB
	B
	b(= xB)
	x1       x2	S1	S2	S3

	4
0
6
	x2 S3
x1
	42/5
39/5
12/5
	0	1	3/5    -2/5	0
0	0	1/5	1/5	1
1	0	-2/5    3/5	0

	Z = 48
	
	Zj
	6	4	0	2	0

	
	
	Cj − Zj
	0	0	0	-2	0




4.5.2 Unbounded Solution

In maximization LPP, if Cj − Zj  > 0(Cj − Zj  < 0 for a maximization case) for  a column not in the basis and all entries in this column are negative, then for determining key row, we have to calculate minimum ratio corresponding to each basic variable having negative or zero value in the denominator. Negative value in the denominator can not be considered, as it would indicate the entry of non-basic variable in the basis with a negative value (an infeasible solution will occur). A zero value in the denominator would result in ratio having a +∞. This implies that the entering variable could be increased indeﬁnitely with any of the current basic variables being removed from the basis. In general, an unbounded solution occurs due to wrong formulation of the problem within the constraint set, and thus needs reformulation.
Example: Solve the following LPP;
Max  Z = 3x1 + 5x2

subject to the constraints





and


Solution:



x1 − 2x2 ≤ 6
x1 ≤ 10
x2  ≥ 1


x1, x2 ≥ 0


   Adding slack variables S1, S2, surplus variable S3 and artiﬁcial variable A1
in the constraint set the LPP becomes;
Max Z = 3x1 + 5x2 + 0S1 + 0S2 + 0S3 − MA1


subject to the constraints

x1 − 2x2 + S1 = 6 x1 + S2 = 10 x2 − S3 + A11
and

x1, x2, S1, S2, S3, A1 ≥ 0

   The initial solution to this LPP is shown in Table 4.25

[image: ]Table  4.25:  Initiall Solution

	
	
	Cj −→
	3	5	0	0	0	-M
	

	CB
	B
	b(= xB)
	x1	x2	S1       S2       S3	A1
	Min.Ratio

	0
0
-M
	S1 S2
A1
	6
10
1
	1	-2	1	0	0	0
1	0	0	1	0	0
0	1	0	0	-1	1
	-
-
1
= 1 →
1

	Z = −M
	
	Zj
	0	-M	0	0	M -M
	

	
	
	Cj − Zj
	3	5+M	0	0	-M	0
↑
	





   From Table 4.25, C2 − Z2 has largest positive value, thus variable x2 enters the basis and A1 leaves the basis. The new solution is shown in Table 4.26

Table  4.26:  Improved Solution

	
	
	Cj −→
	3	5	0	0	0	-M

	CB
	B
	b(= xB)
	x1       x2       S1       S2       S3	A1

	0
0
5
	S1 S2
x2
	8
10
1
	1	0	1	0	-2	2
1	0	0	1	0	0
0	1	0	0	-1	1

	Z = 5 
	
	Zj
	0	5	0	0	-5	5

	
	
	Cj − Zj
	3	0	0	0	5	-M-5





   From the Table 4.26, C1 − Z1 = 3 and C5 − Z5 = 5 entries are positive and C5 − Z5 ≥ C1 − Z1. Therefore, variable S3 should enter into the basis. Here it may be noted that coeﬃcients in the ’S3’ column are all negative or zero. This


indicates that S3 cannot be entered into the basis. However, the value of S3 can be increased inﬁnitely without removing any one of the basic variables. Further, since S3 is associated with x1 in the third constraint, x1 will also be increased inﬁnitely because it can be expressed as x1 = 1 + S3 − A1. Hence, the solution to the given LPP is unbounded.

4.5.3 Infeasible Solution

In the ﬁnal simplex table,  if atleast one of the artiﬁcial variable appears with  a positive value, no feasible solution exists, because it is not possible to remove such an artiﬁcial variable from the basis using the simplex algorithm. When an infeasible solution exists, the LP Model should be reformulated. This may be because of the fact that the model is either improperly formulated or two or more of the constraints are incompatible.
Example:

Max  Z = 6x1 + 4x2

subject to the constraints
x1 + x2  ≤ 5
x2 ≥ 8
and
x1, x2 ≥ 0
Solution:

   By adding slack, surplus and artiﬁcial variables, the LPP becomes;
Max Z = 6x1 + 4x2 + 0S1 + 0S2 − MA1
subject to the constraints

x1 + x2 + S1 = 5 
x2 − S2 + A1 = 8 
and
x1, x2, S1, S2, A1 ≥ 0

   The initial solution to this LPP is shown in Table 4.27



[image: ]Table  4.27:  Initial Solution

	
	
	Cj −→
	6	4	0	0	-M
	

	CB
	B
	b(= xB)
	x1	x2	S1       S2	A1
	Min.Ratio

	0
-M
	S1
A1
	5
8
	1	1	1	0	0
0	1	0	-1	1
	5 = 5 →
1
8 = 8 
1

	Z = −8M
	
	Zj
	0	-M	0	M -M
	

	
	
	Cj − Zj
	6	4+M	0	-M	0
↑
	




Table 4.28:

	
	
	Cj −→
	6	4	0	0	-M

	CB
	B
	b(= xB)
	x1	x2	S1	S2	A1

	4
-M
	x2
A1
	5
3
	1	1	1	0	0
-1	0	-1	-1	1

	Z = 20 − 3M
	
	Zj
	4+M	4	4+M M -M

	
	
	Cj − Zj
	2-M	0	-4-M   -M	0




   Variable x2 enters the basis and S1 leaves the basis. The new solution is shown in Table 4.28
   Since all Cj − Zj ≤ 0, the solution shown in Table 4.28 ia optimal. But this solution is not feasible for the given problem since it has x1 = 0 and x2 = 5 (recall that in the second constraint x2 ≥ 8). The fact that artiﬁcial variable A1 = 3 is in the solution also indicates that the ﬁnal solution violates the second constraint.


[bookmark: _GoBack]DUALITY IN LINEAR PROGRAMMING


5.1 Introduction

The term dual in general sense implies two or double. In the context of linear programming duality implies that each LPP can be analysed in two diﬀerent ways but having equivalent solution. Moreover, whenever the LPP contains a large number of constraints and a smaller number of variables then the labour of computational can be considerably reduced by converting it into the dual and then solve it. Every LPP is associated with another LPP called the dual based on the same data. The original problem is called the primal.


5.2 Formulation of Dual Linear Programming Problem

Let the primal LPP be;
Max Zx = c1x1 + c2x2 + ... + cnxn
subject to the constraints


a11x1	+a12x2   + ... +	a1nxn ≤ b1 a21x1	+a22x2   + ... +	a2nxn ≤ b2
..	..	..
am1x1 +am2x2 + ... + amnxn ≤ bm

and
x1, x2,..., xn ≥ 0
Then the corresponding dual is deﬁned as:
Min Zy = b1y1 + b2y2 + ... + bmym
subject to the constraints


a11y1   +a12y2   + ... +	a1nym ≤ c1 a21y1   +a22y2   + ... +	a2nym ≤ c2
..	..	..
an1y1 +an2y2 + ... + amnym ≤ cn

y1, y2,..., ym ≥ 0

5.2.1 Rules for Constructing the Duality from Primal

1. Change the objective of maximization in the primal into minimization in the dual and vice-versa.
2. For a maximization primal with all ≤ type constraints, there exists a min- imization dual problem with all ≥ type constraints and vice-versa. The inequality sign for non-negativity constraint is unreversed.
3. The number of variables in the primal will be the number of constraints in the dual and vice-versa.
4. The cost of coeﬃcients c1, c2,..., cn in the objective function of the primal will be the RHS constant of the constraints in the dual and vice-versa.
5. For the constraints of dual, transpose the body matrix of the primal problem.
6. If the ith primal variable is unrestricted in sign, then the jth dual constraint is = type and vice-versa.

Example 1: Write the dual of the following LPP;
Max  Zx = 3x1 + x2 + x3
73
and


Subject to





and



4x1 − x2 ≤ 8
8x1 + x2 + 3x3  ≥ 12
5x1 − 6x3 ≤ 13


x1, x2, x3 ≥ 0

Solution: Let y1, y2 and y3 be the dual variables, then the corresponding dual is;
Min Zy = 8y1 + 12y2 + 13y3
Subject to
4y1 − 8y2 + 5y3 ≥ 13
−y1 − y2 ≥ −1
−3y1 − 6y3 ≥ 1

y1, y2, y3 ≥ 0
Example 2: Write the dual of the following LPP;
Min  Zx = 3x1 − 2x2 + 4x3

Subject to







and



3x1 + 5x2 + 4x3 ≥ 7
6x1 + x2 + 3x3 ≥ 4
7x1 − 2x2 − x3 ≤ 10 x1 − 2x2 + 5x3 ≥ 3 4x1 + 7x2 − 2x3 ≥ 2


x1, x2, x3 ≥ 0

Solution:Since the objective function is of minimization type all inequalities have to be changed to ≥ type. Constraint No:3 will change to;
−7x1 + 2x2 + x3 ≥ −10
Let y1, y2, y3, y4 and y5 are dual variable corresponding to ﬁve primal constraints,thus the dual to this LPP is;
Max Zy = 7y1 + 4y2 − 10y3 + 3y4 + 2y5

Subject to





and



3y1 + 6y2 − 7y3 + y4 + 4y5 ≤ 3
5y1 + y2 + 2y3 − 2y4 + 7y5 ≤ −2
4y1 + 3y2 + y3 + 5y4 − 2y5 ≤ 4


y1, y2, y3, y4, y5 ≥ 0

Example 3:Obtain the dual of the following LPP;
Max Zx = x1 − 2x2 + 3x3
Subject to
−2x1 + x2 + 3x3 = 2 2x1 + 3x2 + 4x3 = 1 


x1, x2, x3 ≥ 0
Solution: Since both the primal constraints are = type, the corresponding dual variables y1, y2 will be unrestricted in sign, the dual to this LPP is;
Min  Zy = 2y1 + y2

Subject to
−2y1 + 2y2 ≥ 1 y1 + 3y2 ≥ −2 3y1 + 4y2 ≥ 3
and

y1, y2 unrestricted in sign

5.2.2 Primal - Dual Relationship

A summary of the general relationship between primal and dual LPP is given in Table 5.1

Table 5.1: Primal-Dual Relationship

	If Primal
	Then Dual

	i)Objective is to maximise
	i)Objective is to minimise

	ii)Variable xj
	ii)Constraint j

	iii)Constraint i
	iii)Variable yi

	iv)Variables xj unrestricted insign
	iv)Constraint j is = type

	v)Constraint i is = type
	v)Variable yi is unrestricted in sign

	vi)≤ type constraints
	vi)≥ type constraints

	vii)xj unrestricted in sign
	vii)jth constraint is an equatio







5.3 Standard Results on Duality

You can make a proof of the following standard results;

1. The dual of the dual LPP is again the primal problem.


2. If either the primal or the dual has an unbounded objective function value, the other problem has no feasible solution.
3. If either the primal or dual problem has a ﬁnite optimal solution, the other one also possesses the same, and the optimal value of the objective function of the two problems are equal i.e. Max Zx = Min Zy. This analytical result is known as the fundamental primal-dual relationship.
4. Complementary slackness property of primal-dual relationship states that for a positive basic variable in the primal, the corresponding dual variable will be equal to zero. Alternatively, for a non-basic variable in the primal (which is zero), the corresponding dual variable will be basic and positive.


5.4 Signiﬁcant of Duality

The importance of dual LPP is in terms of the information which it provides about the value of the resources. The economic analysis is concerned in deciding whether or not to secure more resources and how much to pay for these additional resources. The signiﬁcance of the study of dual is as follows;

1. The dual variables provide the decision-maker a basis for deciding how much to pay for additional units of resources.
2. The maximum amount that should be paid for one additional unit of a re- source is called its shadow price (also called simplex multiplier).
3. The total marginal value of the resources equals the optimal objective func- tion value. The dual variables equal the marginal value of resources (shadow prices).


5.5 Advantages of Duality

1. It is advantageous to solve the dual of primal having less number of con- straints, because the number of constraints usually equals the number of iterations required to solve the problem.
2. It avoids the necessity for adding surplus or artiﬁcial variables and solves the problem quickly (the technique is known as the primal-dual method). In economics, duality is useful in the formulation of the input and output systems. It is also in physics, engineering, mathematics, etc.
3. The dual variables provide an important economic interpretation of the ﬁnal solution of an LPP.
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4. It is quite useful when investigating changes in the parameters of an LPP (the technique is known as the sensitivity analysis).
5. Duality is used to solve an LPP by the simplex method in which the initial solution is infeasible (the technique is known as the dual simplex method)

Problem:

Write the dual of the following primal LPP;


1.


Subject to






and

Max Zx = 2x1 + 5x2 + 6x3 5x1 + 6x2 − x3 ≤ 3
−2x1 + x2 + 4x3 ≤ 4
x1 − 5x2 + 3x3 ≤ 1
−3x1 − 3x2 + 7x3 ≤ 6

x1, x2, x3 ≥ 0

2.


Subject to



and



Max Zx = 2x1 + 3x2 + x3


4x1 + 3x2 + x3 = 6 
x1 + 2x2 + 5x3 = 4 


x1, x2, x3 ≥ 0

3.


Subject to




and



Min Zx = 2x1 + 3x2 + x3


2x1 + 3x254x3 ≥ 2
3x1 + x2 + 5x3 = 3 
x1 + 4x2 + 6x3 ≤ 5

x1, x2 ≥ 0, x3 is unrestricted.
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