




[bookmark: Partial_derivatives]             VECTOR CALCULUS



For a function f = f (x, y) of two variables, we define the partial derivative of f with respect to x
as
∂ f  = lim f (x + h, y) − f (x, y) ,
∂x	h→0	h
and similarly for the partial derivative of f with respect to y. To take a partial derivative, take the derivative treating all other variables as constants. As an example, consider

f (x, y) = 2x3y2 + y3.



We have

∂ f = 6x2y2,	∂ f
∂x	∂y


= 4x3y + 3y2.

Second derivatives are defined as the derivatives of the first derivatives, so we have


∂2 f

2	∂2 f	3



∂x2 = 12xy ,

∂y2 = 4x

+ 6y;


and for continuous differentiable functions, the mixed second partial derivatives are independent of the order in which the derivatives are taken,

∂2 f


∂x∂y


= 12x2y =

∂2 f
∂y∂x .


To develop a multivariable Taylor series, we introduce the standard subscript notation for partial derivatives,

f	∂ f	∂ f

∂2 f

∂2 f

∂2 f



x  = ∂x ,	fy = ∂y ,	fxx = ∂x2 ,	fxy = ∂x∂y ,	fyy = ∂y2 ,	etc.
The Taylor series of f (x, y) is then written as
 (
2!
)f (x, y) = f + fx x + fyy + 1 . fxx x2 + 2 fxyxy + fyyy2Σ + . . . ,
where the function and all its partial derivatives on the right-hand side are evaluated at the origin.


[bookmark: The_method_of_least_squares]
The method of least squares

Local maxima and minima of a multivariable function can be found by computing the zeros of the partial derivatives. These zeros are called the critical points of the function. A critical point need not be a maximum or minimum, for example it might be a minimum in one direction and a maximum in another (called a saddle point), but in many problems maxima or minima may be assumed to exist. Here, we illustrate the procedure for minimizing a function by solving the least-squares problem.
 (
y
)Suppose there is some experimental data that you want to fit by a straight line (illustrated on the right). In general, let the data consist of a set of n points given by (x1, y1), . . . , (xn, yn). Here, we assume that the x values are exact, and the y values are noisy. We further assume that the best fit line to the data takes the form y = β0 + β1x. Although we know that the line can not go through all the data points, we can try to find
the line that minimizes the sum of the squares of the vertical	x
distances between the line and the points.
Define this function of the sum of the squares to be

n
 (
−
)f (β0, β1) = ∑ (β0 + β1xi	yi)2 .
i=1
Here, the data is assumed given and the unknowns are the fitting parameters β0 and β1. It should be clear from the problem specification, that there must be values of β0 and β1 that minimize the function f = f (β0, β1). To determine, these values, we set ∂ f /∂β0 = ∂ f /∂β1 = 0. This results in the equations


n
 (
−
)∑(β0 + β1xi	yi) = 0,
i=1

n
 (
−
)∑ xi (β0 + β1xi	yi) = 0.
i=1

We can write these equations as a linear system for β0 and β1 as

n	n	n	n	n
 (
i
)β0n + β1 ∑ xi = ∑ yi,	β0 ∑ xi + β1 ∑ x2 = ∑ xiyi.

i=1

i=1

i=1

i=1

i=1

The solution for β0 and β1 in terms of the data is given by

∑ x2 ∑ yi − ∑ xiyi ∑ xi	n ∑ xiyi − (∑ xi)(∑ yi)


β0 =	i	2

2	,	β1 =

2	2	,

n ∑ xi − (∑ xi)
where the summations are from i = 1 to n.

n ∑ xi − (∑ xi)

[bookmark: Chain_rule]Chain rule


Partial derivatives are used in applying the chain rule to a function of several variables.   Consider      a two-dimensional scalar field f = f (x, y), and define the total differential of f to be
d f = f (x + dx, y + dy) − f (x, y).


 (
37
)
We can write d f as


d f = [ f (x + dx, y + dy) − f (x, y + dy)] + [ f (x, y + dy) − f (x, y)]

∂ f
= ∂x

dx +

∂ f dy.
∂y


If one has f = f (x(t), y(t)), say, then division of d f by dt results in
d f	∂ f dx	∂ f dy
dt  = ∂x dt  + ∂y  dt .
And if one has f = f (x(r, θ), y(r, θ)), say, then the corresponding chain rule is given by

∂ f =
∂r

∂ f ∂x


∂x ∂r

∂ f ∂y
+ ∂y ∂r ,

∂ f =
∂θ

∂ f ∂x


∂x ∂θ

∂ f ∂y
+ ∂y ∂θ .



Example: Consider the differential equation dx


u t, x t

. Determine a formula for d2 x in terms of u and its



partial derivatives.

dt = (

( ))

dt2



Applying the chain rule, we have at time t,

d2 x



∂u	∂u dx

dt2   =  ∂t  + ∂x dt

∂u
= ∂t

∂u
+ u ∂x .

The above formula is called the material derivative and in three dimensions forms a part of the Navier- Stokes equation for fluid flow.

[bookmark: Triple_product_rule]Triple product rule


Suppose that three variables x, y and z are related by the equation f (x, y, z) = 0, and it that is possible to write x = x(y, z) and z = z(x, y). Taking differentials of x and y, we have
dx = ∂x dy + ∂x dz,	dz = ∂z dx + ∂z dy.
∂y	∂z	∂x	∂y

We can make use of the second equation to eliminate dz in the first equation to obtain
dx = ∂x dy + ∂x . ∂z dx + ∂z dyΣ ;
∂y	∂z	∂x	∂y

or collecting terms,
 (
∂
z 
∂
x
) (
∂
y
) (
∂
z 
∂
y
).1 − ∂x ∂z Σ dx = . ∂x + ∂x ∂z Σ dy.
Since dx and dy are independent variations, the terms in parenthesis must be zero. The left-hand-side results in the reciprocity relation


∂x ∂z


∂z ∂x

= 1,

which states the intuitive result that ∂z/∂x and ∂x/∂z are multiplicative inverses of each other. The right-hand-side results in
∂x	∂x ∂z
∂y = − ∂z ∂y ,
which, when making use of the reciprocity relation, yields the counterintuitive triple product rule,

∂x ∂y ∂z
∂y ∂z ∂x = −1.

[bookmark: Triple_product_rule:_example]
Triple product rule: example

Example: Demonstrate the triple product rule using the ideal gas law.

The ideal gas law states that
PV  = nRT,
where P is the pressure, V is the volume, T is the absolute temperature, n is the number of moles of the gas, and R is the ideal gas constant. We say P, V and T  are the state variables, and the ideal gas law is a relation of the form
f (P, V, T) = PV − nRT = 0.
We  can write P = P(V, T), V  = V(P, T), and T = T(P, V), that  is,
P = nRT ,	V  = nRT ,	T =  PV ;


V
and the partial derivatives are given by

P	nR



∂P	nRT

∂V	nR

∂T	V



The triple product results in

∂V = − V2 ,

∂T = P ,

=	.
∂P	nR

 (
∂
V 
∂
T 
∂
P
) (
V
2
) (
P
) (
nR
) (
PV
)∂P ∂V ∂T = − . nRT Σ . nR Σ . V Σ = −nRT = −1,

where we make use of the ideal gas law in the last equality.





Gradient


Consider the three-dimensional scalar field f = f (x, y, z), and the differential d f , given by

d f = ∂ f dx + ∂ f dy + ∂ f dz.
∂x	∂y	∂z

Using the dot product, we can write this in vector form as
d f = . ∂ f � + ∂ f � + ∂ f �Σ · (dx� + dy� + dz�) = ∇ f · d�,


∂x	∂y

where in Cartesian coordinates,

∂z

∂ f	∂ f	∂ f

∇ f = ∂x � + ∂y � + ∂z �
is called the gradient of f . The nabla symbol ∇ is pronounced “del” and ∇ f is pronounced “del- f ”. Another useful way to view the gradient is to consider ∇ as a vector differential operator which has the form
∂	∂	∂
∇ = � ∂x + � ∂y + � ∂z .
Because of the properties of the dot product, the differential d f is maximum when the infinitesimal displacement vector d� is along the direction of the gradient ∇ f . We then say that ∇ f points in the direction of maximally increasing f , and whose magnitude gives the slope (or gradient) of f in that direction.
Example: Compute the gradient of f (x, y, z) = xyz.
The partial derivatives are easily calculated, and we have

∇ f = yz � + xz � + xy �.

[bookmark: Divergence]Divergence


Consider in Cartesian coordinates the three-dimensional vector field, � = u1(x, y, z)� + u2(x, y, z)� + u3(x, y, z)�. The divergence of �, denoted as ∇ · � and pronounced “del-dot-u”, is defined as the scalar field given by
 (
∂
x
) (
∂
y
) (
∂
z
)∇ · � = .�  ∂  + �  ∂  + �  ∂  Σ · (u1� + u2� + u3�)
= ∂u1 + ∂u2 + ∂u3 .
∂x	∂y	∂z

Here, the dot product is used between a vector differential operator ∇ and a vector field �. The diver- gence measures how much a vector field spreads out, or diverges, from a point. A more math-based description will be given later.

Example: Let the position vector be given by � = x� + y� + z�. Find ∇ · �.
A direct calculation gives
∂	∂	∂



Example: Let 𝐹 = �
|�|3

∇ · � = ∂x x + ∂y y + ∂z z = 3.
for all � ƒ= 0. Find ∇ · 𝐹 .


Writing out the components of 𝐹 , we have
x	y	z
𝐹 = F1� + F2� + F3� = (x2 + y2 + z2)3/2 � + (x2 + y2 + z2)3/2 � + (x2 + y2 + z2)3/2 �.
Using the quotient rule for the derivative, we have

∂F1	(x2 + y2 + z2)3/2 − 3x2(x2 + y2 + z2)1/2	 1	3x2
∂x  =	(x2 + y2 + z2)3	= |�|3  − |�|5 ,
and analogous results for ∂F2/∂y and ∂F3/∂z. Adding the three derivatives results in

3	3(x2  + y2 + z2)	3	3

∇ · 𝐹 = |�|3 −

|�|5	= |�|3 − |�|3 = 0,

valid as long as |�| ƒ= 0, where 𝐹 diverges. In the study of electrostatics, 𝐹 is proportional to the electric field of a point charge located at the origin.

[bookmark: Curl]Curl


Consider in Cartesian coordinates the three-dimensional vector field � = u1(x, y, z)� + u2(x, y, z)� + u3(x, y, z)�. The curl of �, denoted as ∇ × � and pronounced “del-cross-u”, is defined as the vector field given by



�	�	�
.	.
 (
∇
 
×
)

. ∂u3	∂u2 Σ

. ∂u1	∂u3 Σ

. ∂u2	∂u1 Σ

� =  ∂/∂x	∂/∂y	∂/∂z =
.	.

∂y  − ∂z	� +

∂z  − ∂x	� +

∂x  − ∂y	�.

. u1	u2	u3 .

Here, the cross product is used between a vector differential operator and a vector field. The curl measures how much a vector field rotates, or curls, around a point. A more math-based description will be given later.
Example: Show that the curl of a gradient is zero, that is, ∇ × (∇ f ) = 0.
We have
 (


) (
∇
 
×
 
(
∇
 
f
 
)
 
=
∂
/
∂
x
∂
/
∂
y
∂
/
∂
z
∂
 
f
 
/
∂
x
∂
 
f
 
/
∂
y
∂
 
f
 
/
∂
z
)	�	�	�	


 (
=
) (
∂
y
∂
z 
−
 
∂
z
∂
y
) (
�
 
+
) (
∂
z
∂
x 
− 
∂
x
∂
z
) (
�
 
+
) (
∂
x
∂
y 
− 
∂
y
∂
x
) (
�
 
=
 
0,
). ∂2 f	∂2 f Σ	. ∂2 f

	

∂2 f Σ



. ∂2 f

∂2 f Σ




using the equality of mixed partials.
Example: Show that the divergence of a curl is zero, that is, ∇ · (∇ × �) = 0. We have
 (
∂
x
) (
∂
y
) (
∂
z
) (
∂
y
) (
∂
z
) (
∂
x
) (
∂
z
) (
∂
x
) (
∂
y
)∇ · (∇ × �) = ∂ . ∂u3 − ∂u2 Σ + ∂ . ∂u1 − ∂u3 Σ + ∂ . ∂u2 − ∂u1 Σ
 (
=
) (
∂
y
∂
z 
−
 
∂
z
∂
y
) (
+
) (
∂
z
∂
x 
− 
∂
x
∂
z
) (
+
) (
∂
x
∂
y 
− 
∂
y
∂
x
) (
= 
0,
). ∂2u1	∂2u1 Σ	. ∂2u2	∂2u2 Σ	. ∂2u3	∂2u3 Σ

again using the equality of mixed partials.

